In situ kinetics of cytochromes c1 and c2.
نویسندگان
چکیده
In Rhodobacter sphaeroides chromatophores, cytochromes (cyt) c(1) and c(2) have closely overlapping spectra, and their spectral deconvolution provides a challenging task. As a result, analyses of the kinetics of different cytochrome components of the bc(1) complex in purple bacteria usually report only the sum cyt c(1) + cyt c(2) kinetics. Here we used newly determined difference spectra of individual components to resolve the kinetics of cyt c(1) and c(2) in situ via a least-squares (LS) deconvolution. We found that the kinetics of cyt c(1) and c(2) are significantly different from those measured using the traditional difference wavelength (DW) approach, based on the difference in the absorbance at two different wavelengths specific for each component. In particular, with the wavelength pairs previously recommended, differences in instrumental calibration led to kinetics of flash-induced cyt c(1) oxidation measured with the DW method which were faster than those determined by the LS method (half-time of approximately 120 micros vs half-time of approximately 235 micros, in the presence of antimycin). In addition, the LS approach revealed a delay of approximately 50 micros in the kinetics of cyt c(1) oxidation, which was masked when the DW approach was used. We attribute this delay to all processes leading to the oxidation of cyt c(1) after light activation of the photosynthetic reaction center, especially the dissociation of cyt c(2) from the reaction center. We also found that kinetics of both cyt c(1) and c(2) measured by the DW approach were significantly distorted at times longer than 1 ms, due to spectral contamination from changes in the b hemes. The successful spectral deconvolution of cyt c(1) and c(2), and inclusion of both cytochromes in the kinetic analysis, significantly increase the data available for mechanistic understanding of bc(1) turnover in situ.
منابع مشابه
Identification of hnRNP C1/C2 as an Autoantigen in Patients with Behcet’s Disease
Background: Ribonucleoproteins particles that form the spliceosomes are among the most frequently targeted molecules of the autoimmune response. In the last few years, autoantibodies against all A/B hnRNP proteins have been found in the sera of patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), mixed connective tissue disease (MCTD), and serve as diagnostic markers for...
متن کاملPlasmon waveguide resonance spectroscopic evidence for differential binding of oxidized and reduced Rhodobacter capsulatus cytochrome c2 to the cytochrome bc1 complex mediated by the conformation of the Rieske iron-sulfur protein.
The dissociation constants for the binding of Rhodobacter capsulatus cytochrome c2 and its K93P mutant to the cytochrome bc1 complex embedded in a phospholipid bilayer were measured by plasmon waveguide resonance spectroscopy in the presence and absence of the inhibitor stigmatellin. The reduced form of cytochrome c2 strongly binds to reduced cytochrome bc1 (Kd = 0.02 microM) but binds much mor...
متن کاملKinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.
p-Hydroxyphenylacetate hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) to form 3,4-dihydroxyphenylacetate (DHPA). HPAH is composed of two proteins: a flavin mononucleotide (FMN) reductase (C1) and an oxygenase (C2). C1 catalyzes the reduction of FMN by NADH to generate reduced FMN (FMNH-) for use by C2 in the hydroxylation reaction. C1...
متن کاملKinetics of electron transfer between cardiac cytochromes c1 and c.
Highly purified cytochrome c1, which consists of only one heme peptide and does not form a stable c1-c complex (c1-H-c complex), was used in studies of electron transfer between cytochrome c1 and c. Results show that a stable and ionic-strength-sensitive c1-c complex (i.e., the c1-H-c complex) in the forms of the various oxidation states is not required, in contrast to the current belief of the...
متن کاملThe Effect of CaCl2 Salinity on Growth Parameters of Lisianthus Cultivars
Soil and water salinity substantially constrain crop and biomass production. To investigate the changes in morphological parameters of lisianthus (Eustoma grandiflorum) cultivars under CaCl2 salinity conditions a greenhouse experiment was conducted. Cultivars namely, ‘Champagne’ (C1), ‘Lime Green’ (C2), ‘Blue Picotee’ (C3) and ‘Pure White’ (C4), were subjected to salt stress (0–30 mM CaCl2) in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 45 25 شماره
صفحات -
تاریخ انتشار 2006